Error AMP Chain Graphs

نویسنده

  • José M. Peña
چکیده

Any regular Gaussian probability distribution that can be represented by an AMP chain graph (CG) can be expressed as a system of linear equations with correlated errors whose structure depends on the CG. However, the CG represents the errors implicitly, as no nodes in the CG correspond to the errors. We propose in this paper to add some deterministic nodes to the CG in order to represent the errors explicitly. We call the result an EAMP CG. We will show that, as desired, every AMP CG is Markov equivalent to its corresponding EAMP CG under marginalization of the error nodes. We will also show that every EAMP CG under marginalization of the error nodes is Markov equivalent to some LWF CG under marginalization of the error nodes, and that the latter is Markov equivalent to some directed and acyclic graph (DAG) under marginalization of the error nodes and conditioning on some selection nodes. This is important because it implies that the independence model represented by an AMP CG can be accounted for by some data generating process that is partially observed and has selection bias. Finally, we will show that EAMP CGs are closed under marginalization. This is a desirable feature because it guarantees parsimonious models under marginalization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Marginal AMP Chain Graphs

We present a new family of graphical models that may have undirected, directed and bidirected edges. We name these new models marginal AMP (MAMP) chain graphs because each of them can be seen as the result of marginalizing out some nodes in an AMP chain graph. However, MAMP chain graphs do not only subsume AMP chain graphs but also regression chain graphs. We describe global and local Markov pr...

متن کامل

Learning Marginal AMP Chain Graphs under Faithfulness

Marginal AMP chain graphs are a recently introduced family of models that is based on graphs that may have undirected, directed and bidirected edges. They unify and generalize the AMP and the multivariate regression interpretations of chain graphs. In this paper, we present a constraint based algorithm for learning a marginal AMP chain graph from a probability distribution which is faithful to ...

متن کامل

Learning AMP Chain Graphs under Faithfulness

This paper deals with chain graphs under the alternative Andersson-Madigan-Perlman (AMP) interpretation. In particular, we present a constraint based algorithm for learning an AMP chain graph a given probability distribution is faithful to. We also show that the extension of Meek’s conjecture to AMP chain graphs does not hold, which compromises the development of efficient and correct score+sea...

متن کامل

Learning marginal AMP chain graphs under faithfulness revisited

Marginal AMP chain graphs are a recently introduced family of models that is based on graphs that may have undirected, directed and bidirected edges. They unify and generalize the AMP and the multivariate regression interpretations of chain graphs. In this paper, we present a constraint based algorithm for learning a marginal AMP chain graph from a probability distribution which is faithful to ...

متن کامل

Learning AMP Chain Graphs and some Marginal Models Thereof under Faithfulness

This paper deals with chain graphs under the Andersson-Madigan-Perlman (AMP) interpretation. In particular, we present a constraint based algorithm for learning an AMP chain graph a given probability distribution is faithful to. Moreover, we show that the extension of Meek’s conjecture to AMP chain graphs does not hold, which compromises the development of efficient and correct score+search lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013